
A curvature estimation for pen input segmentation

in sketch-based modeling

Dae Hyun Kim a,*, Myoung-Jun Kim b

a Institute for Graphic Interfaces, Ewha-SK Bldg. 11-1, DaeHyun, Seodaemun, Seoul Korea
b Division of Digital Media, Ewha Womans University, Ewha-SK Bldg. 11-1, DaeHyun-dong, Seodaemun, Seoul Korea

Received 27 January 2005; received in revised form 12 October 2005; accepted 16 October 2005

Abstract

A proper segmentation of pen marking enhances shape recognition and enables a natural interface for sketch-based modeling from simple line

drawing tools to 3D solid modeling applications; user input is otherwise restricted to draw only one segment per one stroke. In general, the pen

marking segmentation is achieved by detecting the points of high curvature-called, segmenting points-and splitting the pen marking at those

points. This paper presents a curvature estimation method, which considers only local shape information. The proposed method can therefore

estimate curvature on-the-fly while user is drawing on a pen-input display, such as tablet PCs.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Curvature; Local shape information; Pen-input displays; Segmentation
1. Introduction

Given a pen marking pZ{pijiZ0,.,n}, drawn on a pen-

input display, such as LCD tablets integrated into most Tablet

PCs, segmenting points can be defined as the points that have

high curvature (i.e. jcjOt, where c is an estimated curvature

and t is a given threshold). Detected segmenting points lead to

a preliminary segmentation, when the pen marking is split at

each of them. Therefore, a proper segmentation owes its

success, in most cases, to a proper curvature estimation. The

inflection points, zeros of the second derivative, are also

regarded as segmenting points. However, if needed, it is more

advantageous to process them during curve fitting for each

segment after the preliminary segmentation; otherwise small

fluctuations as shown in Fig. 12 will produce many

unnecessary inflection points [10].

Before developing a curvature estimation algorithm for pen-

input displays, one needs to know input style; for example,

user’s drawing skill and the mechanical properties of the input

devices. In this paper, the following input data assumption has
0010-4485//$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cad.2005.10.006

* Corresponding author. Fax: C82 2 3277 3893.

E-mail addresses: daek@acm.org (D.H. Kim), mjkim@ewha.ac.kr (M.-

J. Kim).
been considered in the design of a new method to estimate

curvature: Input data is taken from a pen-based input device;

therefore, it contains no noise occurring because the input

device cannot follow user’s drawing. Therefore, all sampled

points are regarded as genuine data, and their coordinates are

taken as given. For example, wiggly lines, as those in Fig. 1, are

caused by user intention, but not by the noise added performing

the pen marking.

Previous works: We review two classes of approaches for

detecting segmenting points which are directly related to our

work; one specialized aspect of our work is that the method

should be applicable for pen input devices—for a broader

survey of segmenting point detection we refer the reader to [3].

The first class of approaches is to use scale space

decomposition; it decomposes the pen marking into multi-

level representations by progressively smoothing it with

different smoothing functions and picks up one level among

them, which can represent user’s intention. There are two

approaches available within this class: either curvature is

evaluated in a selected scale after transforming the input data to

the Gaussian scale space [7,8] or estimated curvature is

transformed into scale space and one scale is selected [2,10].

One advantage of using scale space decomposition is that it is

suitable for noisy data as shown in Fig. 1. However, a long

computing time is needed to construct Gaussian scale space.

Considering the input assumption that we have made above,
Computer-Aided Design 38 (2006) 238–248
www.elsevier.com/locate/cad

http://www.elsevier.com/locate/cad

Fig. 1. A wiggly pen marking, which may come from noisy input or from user

intention.

Fig. 2. Defining the direction at point pi.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 238–248 239
this high computation has been considered unnecessary for our

computational model.

The second class of approaches is to estimate curvature

directly from input data [3,9,11,12]; it examines the k-nearest

neighbors (region of support) to estimate curvature since the

definition of curvature for the mathematical curves does not

hold for a digital curve. Teh and Chin [11] claimed that a

precise determination of region of support is most important to

a proper curvature estimation.

Rosenfeld’s method [9] takes one parameter, the support

size, which needs to be assigned initially [9,12]. Fu et al. [3]

proved that this method produces redundant points or misses

some points. Teh and Chin [11] proposed a method to

dynamically change the support size. However, Fu et al.

showed that the criteria of Teh and Chin to select the support

size at each point sometimes do not work correctly [3]. Fu et al.

suggested a new method where a global support size is

searched for ahead such that in every support only one local

maximum is found for a height function. Because this method

has to scan the point sequence several times to find a proper

support size, it is less efficient than ours.

Contributions: For freehand pen marking, this paper

proposes new criteria to determine region of support: local

shape information such as local convexity and local mono-

tonicity. They can be effectively tested only by checking signed

direction. Since they are defined locally, curvature estimation

can be done on the fly while scanning the input sequence.

Furthermore, to let the programmers test the characteristics of

pen input devices, we provide tolerance models as well. This

paper also helps understand the characteristics of freehand pen

marking, to develop sketch-based applications.

Paper organization: In Section 2, we define the terms and

notations that will be used throughout the paper. Section 3

describes our curvature estimation method. Based on the

curvature and an additional interaction feature, pen-speed,

which can be provided only in interactive applications,

segmentation rule is presented. Furthermore, through an

example will be explained how to use obtained segmentation

information in the process of recognizing pen markings. In

Section 4, we evaluate our algorithm and similar methods by

analyzing their behaviors. Furthermore, for more quantitative

evaluation we conduct user tests to see to which extent the

algorithm is regarded as efficient for different drawing styles as

its theoretical ground. In Section 5, we discuss the limitations

of our approach.
2. Definitions

Let us define direction at a point, which will be used

throughout the paper to explain our approach.

Definition 1. (Direction at a point)

Let A, B, and C be three points in the plane. Let LZB-A and

QZC-B be the vectors from A to B and B to C, respectively.

The angle dZ:(L,Q) from the direction of L to that of Q is

called the ‘direction change at B’, or simply ‘direction at B’.

See also Fig. 2 for the direction change at a point of a pen

marking; subsequently, direction change at point pi is denoted

by di.

If input points are acquired in pixel space, direction data can

have at most eight values. Two approaches deal with this

problem of the narrow angle space; one approach is to resample

the point set and the other is to use a sliding window [10].

Resampling means picking up the point that first comes beyond

a given distance from the last sample; in our test, the distance

value, 5.0, has been used. The other approach, called the

sliding window method, computes di with two lines that have

least square distance to kC1 preceding points {pi-k,.,pi} and

kC1 succeeding points {pi,.,piCk}, respectively. To obtain a

wider range of direction value efficiently, we resample the

input data. For the rest of this paper, by input data we mean

already re-sampled points unless stated otherwise. The re-

sampling is performed based on the distance criterion such that

the points of pen marking are almost equally distanced; this

will simplify computations as well as explanations on some

notions used later.

Definition 2. (Support for curvature estimation at pi)

A set of adjacent points that are used for the curvature

estimation at pi is called support. When the number of the

preceding and succeeding points are both k, it is called

k-symmetric support.

The curvature at point pi is denoted by ci. When it depends

on the support size ‘k’, we denote it by ck
i .

Before estimating curvature, let us see what happens while

re-sampling the input points, from Fig. 3. The resampling,

which are performed before curvature estimation, smoothes out

sharp angles at some points, so that some features are lost.

Therefore, by necessity, the support size should be increased

for each point; in other words, curvature estimation should be

further generalized as ck
i , including the k-symmetric support.

3. Curvature estimation

We first derive the curvature for the pen marking p (i.e.

digital curve) from differential geometry. Although we do not

Fig. 3. Sharp angle around s1 and s2 has been smoothed out; smoothing by re-sampling cannot be avoided. Original pen marking sZ{si}, compared with re-sampled

one, is shaded in gray.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 238–248240
believe the curvature estimation for the digital curves does not

need to be always based on the second derivative, most other

approaches ultimately come from the definition of the second

derivative. We show that curvature estimation based on angle

formed by three consecutive points is basically the same as

the infinitesimal behavior of the curvature estimation (i.e.

second derivative) on continuous curves. Let g(s):R/R2 be a

planar curve, twice differentiable and arc length parameterized.

Then, the curvature for the continuous planar curve is defined

as [1]:

jjg00ðsÞjj Z

���� lim
Ds/0

g0ðs CDsÞKg0ðsÞ

Ds

���� (1)

On the right side of Eq. (1), g 0(s) represents the unit tangent

vector at the curve point g(s). The difference of the two tangent

directions, g0ðsCDsÞKg0ðsÞ, can be more intuitively rep-

resented by the angle. Therefore, when g(s) is approximated by

a digital curve (i.e. a pen marking, p) the curvature at a point pi

can be simplified into the following

ci Z
di

Dsi

; (2)

where di is defined as in Definition 1, and DsiZkpiC1Kpik.

Since the re-sampling on the pen marking turns Dsi into nearly

a constant, Osi can be omitted from the Eq. (2):

ci Z di: (3)
Fig. 4. Direction in [10].
Therefore, we set c1
i Zdi as first level curvature estimation,

with the support size one. Meanwhile, the omitted Osi is

reflected into the support size k.

Our definition of direction change is different from that of

Sezgin’s [10]. Let d̂i and ĉi be Sezgin’s direction data and

curvature data, respectively, then d̂i is defined as the angle

between the x-axis and the vector QiZpiKpiK1 (see Fig. 4),

and ĉiZ ðd̂iC1Kd̂iÞ=Dsi. Since diZ ðd̂iC1Kd̂iÞ, ĉiZdi=Dsi, and

Dsi is presumed nearly constant, our direction change at pi is as

informative as Sezgin’s curvature estimation.

Given the direction data as a preliminary approximation of

the curvature, we define a new curvature measure considering

two local shape information: Local convexity and local

monotonicity (Fig. 5).

Definition 3. (Local convexity at pj with respect to pi) A

polygon is locally convex at pj with respect to pj(isj)), if di and

dj have the same sign.

A naive approach for curvature estimation considering only

local convexity information can be formulated as follows:

extending the support to each side of pi, if the current point pj

(jZiGl, lZ1,.,k) is locally convex with respect to pi, the

point pj is added to the adaptive support at pi. Direction values

within the support are added to yield the curvature ck
i . The

curvature estimator can be described procedurally as the

algorithm in Fig. 5.

In Algorithm 1, k no longer indicates actual support size, but

rather the maximum support size. For example, on the lefthand

side of Fig. 6 with kZ1, local area searched for spans from

piK1 to piC1; however, actual support is set to cover only
Fig. 5. Algorithm 1: Curvature estimation only with local convexity.

Fig. 6. The effect of the adaptively changing support with kZ1. The actual support is denoted by the dotted rectangle. Without convexity criterion, however, actual

support is set to the solid-line rectangle.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 238–248 241
the point pi according to the local convexity criterion.

Meanwhile, for the right hand figure the actual support for

the point pi includes pi and piC1 because the latter point is

locally convex with respect to pi.

As mentioned in Section 2, sharp segmenting points are

often blurred out and lost while re-sampling. Such features can

be recovered by enlarging the support size. Another effect can

be understood by comparing it with other methods; in Fig. 6,

our estimate ck
i does not change as k goes from 1 to 2, but

curvature estimated by the circumscribing circle decreases. In

contrast, bending value increases. Because our method

considered local convexity in deciding actual support,

curvature did not change.

Although Algorithm 1 can be used for some applications

without further modification, at times it makes actual features

indistinguishable. For example, Fig. 7 illustrates a counter

example: Computing ck
iK1, ck

i , and ck
iC1, all neighbor direction

values within the support are added and wind up 180 degree

because they are all locally convex with respect to each other.

To mend this problem, the local monotonicity property is

considered in the curvature estimation.

From the example of Fig. 7, we derive the local

monotonicity property; although di has a local minimum at

pi, applying Definition 5 makes all three points piK1, pi, and

piC1 have the same curvature value, 180. As a result,

segmentation is confused in choosing appropriate segmenting

points; such confusion will require complicated heuristics, as in
Fig. 7. An example to explain local monotonicity. Curvatures only with local

convexity at pi-1, pi, and piC1 are all 180. Curvature with both local convexity

and monotonicity are 105, 30, and 105, respectively.
[3,12,10], to remove unnecessary features. Therefore, it is more

desirable to make the sequence, fckO1
i jiZ0;.; ng, as dis-

tinctive as the sequence of the direction value {diZjiZ
0,.,n}. Relations (i.e. !andO) between di and diC1 will be

preserved between ck
i and ck

iC1 as well (Fig. 8).

Lemma 4. Local Monotonicity

Given a sequence of non-negative numbers,

f.; siKn;.; si;.; siCn;.g, define Sl
i to be the monotonically

decreasing subsequence of maximum length kC1, extending

from si to the left. Define Sr
i to be the monotonically decreasing

subsequence of maximum length kC1, extending from si to the

right. Further,

ai Z
X

Sl
i C

X
Sr

i Ksi: (4)

If si!siC1, ai!aiC1. If siOsiC1, aiOaiC1.

Proof. : Assume that si!siC1. We show aiOaiC1.

Let us denote the last elements of Sl
i and Sr

iC1 by a and b,

respectively. By their definition thenP
Sl

iC1 Z
P

Sl
i KaCsiC1

P
Sr

iC1 Z
P

Sr
i KbKsi

Similarly to Eq. (4), aiC1 can be represented by

aiC1 Z
X

Sl
iC1 C

X
Sr

iC1KsiC1 Z ai CbKa:

Therefore, aiC1 KaiZbKa. We now have aiC1Oai since

bOa.
Fig. 8. Algorithm 2: estimate curvature ck
i at point pi.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 238–248242
The case of siOsiC1 can be analogously proved.

,

The sequences stated in Lemma. 4, Sr
i and Sl

i, are said to

have local monotonicity property with respect to si. We apply

Lemma 4 to the adaptively changing support, leading to the

new curvature estimation of Algorithm 2; it considers both

local convexity and local monotonicity. The resulting

curvature sequence, fck
i g, will not only preserve the ordering

information of direction data, but also provide a kind of

enhanced view to the local shape of the pen marking. To

compute the curvature ck
i , our method adds the neighbor

direction values, which are locally convex and monotonous

with respect to pi. We express this curvature estimation in a

procedure as the algorithm depicted in Fig. 8.

Interpretation on the support size k and re-sampling distance

[follows. Since the pen marking was resampled such that

distance between adjacent sample points is not larger than [,

size of the view into the local shape becomes 2[k. On this basis,

the practical number of k can be chosen; throughout our

experiments, kZ3 and [Z5. More importantly, we can easily

incorporate tolerances that allow small fluctuations in

convexity and monotonicity property, by slightly modifying

the min value and sgn function. For example, sgn(x) function

can be modified to return zero for K3%x%3. Likewise, min

can be modified to have a tolerance zone.

As seen from the two curvature estimators defined above

and the calculation of direction value at each point (see

Definition 1), scan the pen marking only once to compute

curvature at all the input points. Except for computing direction

value our approach introduces no noticeable complex

computation. Estimated curvature values tell us whether the

curve portion is convex or concave, as well as its magnitude by

angle. Another property of our approach is that it is invariant

under the rotation and reordering of pen markings, e.g. back to

front or front to back order; since the direction data and the

actual support at each point are invariant under the change of

the scanning order, so is the resulting curvature. For example,

on the right side of Fig. 6 scanning from the left to the right and
Fig. 9. Shape features used
the other way around do not affect the result. Its computational

complexity is O(n) because it scans pen marking once.

For segmentation, local maximum for positive ck
i and local

minimum for negative curvatures are recognized as segmenting

points. Then the absolute value of the curvature under the given

threshold value are recognized as segmenting points. However,

the way specifying the threshold affects the overall perform-

ance of the pen-based interface; too low threshold may result in

unnecessary segmenting points and thus wrong recognition. To

resolve this problem, we add a characteristic feature, pen

speed; at lower speed use smaller threshold. Note, however,

that pen speed has not been used as the dominant feature, rather

it is referenced to additionally detect almost invisible features.

The principle that the user interface should not restrict the

user’s behavior is behind this priority strategy. The shape

features extracted from the segmentation results are summar-

ized in Fig. 9. In this figure, classification of segments into

spline, line, and circular arc has been done using standard least

squares fitting algorithms as in [5]; for example, after line

fitting if error is larger than expected it is no longer regarded as

a line, instead perform circular arc fitting.

If the segmentation results are reliable, for a sketch-based

application, shape recognition improves as well. Recently,

Hammond and Davis [4] proposed a general language to

describe shapes; we followed their approach. To briefly explain

how the recognition works with the segmentation results, we

show an example procedure that recognizes a pen marking

shown in the middle of Fig. 10 as a rotational-arrow by which

the user can invoke rotation commands:

(1) Four segments were found—c1, l2, l3, and l4.

(2) c1 has been classified as circular arc.

(3) l2, l3, and l4 have been classified as straight lines.

(4) c1 and l3 intersect.

(5) :c1s2, :l2sl3, and :l3l4 have the same sign.

(6) Each of their absolute values is larger than 110.

(7) l4’s end point approximately coincides with c1’s end point.

(8) The first acute angle between first two adjacent segments

occurs after half the length of the pen marking.
for shape recognition.

Fig. 10. The three pen markings on the right, which are similar to the shape of

the left image, will be recognized as a rotating-arrow.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 238–248 243
4. Evaluation of the Algorithm

In this section we quantitatively analyze our method as well

as other similar methods for comparison. For more quantitative

discussion, we conduct user tests and show the results as well.
Fig. 11. c2
3 of the circumscribing-circle method better reflects curvature at p3

than c3
3.

Fig. 12. Small fluctuations: a pen marking (left) and a zoom-in (right).
4.1. Analysis and comparison of curvature estimators

We compare our method with two curvature estimation

methods which have been regarded standard—circumscribing

circle and bending function—and verifies our method through

the comparison. The first method for estimating the curvature

at the point pi is to compute the reciprocal of the radius of a

circle that passes through three consecutive points pi-1, pi, and

piC1 [5]:

Ki Z
4Di

jjLijjjjLiC1jjjjQijj
; (5)

where LiZpiKpiK1, QiZpiC1KpiK1, and DiZarea(piK1, pi,

piC1). The quantity Ki has a negative sign when (piK1, pi, piC1)

are in clockwise order, and a positive sign if they are in

counter-clockwise order. We call the above measure circum-

scribing circle curvature (for illustration, see Fig. 11).

The second well-known method is to use the curve bending

function, which is represented by the angle:

Ai Z :piK1pip
0
i; (6)

where p0
i is a projection of pi onto the line segment piK1piC1

[3,12].

Smoothing effect: Regardless of the estimation methods,

both resampling and sliding window, which are performed

before curvature estimation, smooth out sharp angles at some

points, as depicted in Fig. 3, so that some features are lost.

Therefore, we need to see the phenomenon in a wider view;

support must be enlarged at some points, as we did dynamically

within k given.

To compute circumscribing circle and bending function (Eqs.

(5) and (6)) with the enlarged support size kO1, three ordered

points, (pi-k, pi, piCk), are used instead of (piK1, pi, piC1).

Shape description: For example, in Fig. 3, c3
3 of (p0, p3, p6)

from both methods reflects the curvature at p3 no better than c2
3

of (p1, p3, p5), because a locally concave part at p5 with respect

to p3 influences c3
3. Therefore, local convexity can be regarded

as a local shape descriptor and should be considered in

calculating curvature.

Consider another example involving a larger k, as shown in

Fig. 7. The support at pi does not need to extend beyond piK1
since it will increment curvature at pi as k/2 with the two

previous methods. In this example, information that ‘there is

large curvature nearby’ can be better encoded at points piK1

and piC1 than encoded at pi. This has been expressed by local

monotonicity property (Fig. 11).

Efficiency: Fu et al. [3] determines k globally such that every

support for ck
i , iZ0,.,n, has only one local maximum of a

height function hk(j), which computes the minimum distance

between the line segment piKkpiCk and pj, iKk!j!iCk.

More specifically, if a sequence fhkðiKkÞ; hkðiKkC1Þ;.; hk

ðiCkÞg within the k-symmetric support of any point pi, iZ
1,.n, has more than one local maximum, the algorithm

changes k to look for a right one until the requirement is

satisfied. However, if the pen marking contains a small

fluctuation as in Fig. 12, k will be no bigger than 1.

Unfortunately, such minor fluctuations frequently occur even

after being smoothed. Moreover, since the line segment pi-kpiC

k changes as k changes, searching for the right k requires at least

ðnC1Þ
P

2kK1 evaluations of hk(j); above all, it will require

k-pass scans of the pen-marking and at each pass the angle

values must be computed. In our approach, small fluctuations

are ignored (e.g. see the first step of Algorithm 2) and actual

support size changes dynamically using the local shape

information.

Comparably, our curvature estimator defined above and the

calculation of direction value at each point, scan the pen

marking only once. Except for computing direction value our

approach introduces no noticeable complex computation.

Correct angle measurement: Although the bending function

is represented by angle, it often incorrectly reflects the dynamic

Fig. 13. A problem from bending function: as k:2/3, although direction at piK2 is zero, c3
i ends up with a higher value than c2

i .

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 238–248244
change of support size. For example, in Fig. 13, although the

direction at piK2, diK2, is zero, ck
i of the bending function

changes as k:2/3. In other words, the bending function

insensitively reflects point-wise change of geometry unlike

ours.

Now, the above analysis justifies our curvature estimation

with adaptively changing support reflecting local shape

information.

4.2. Evaluation tests

In this section we perform three evaluation tests to evaluate

our algorithm:

† For a given standard drawings on a test sheet, test how our

algorithm performs in case of different drawing styles of

different users.

† Compare four approaches: curvature estimation with only

direction data, only with local convexity, with both local

convexity and monotonicity, and with [3]’s bending

function.

† Analyze our algorithm along with a few special test cases.

First, we have conducted an evaluation test with seven

graduate students studying at the department of computer
Fig. 14. The 22 figures. that the subjects for the user test are in
science. We gave them 21 figures to draw; these figures have

been selected from other papers [2,10], and Microsoft

Powerpoint basic shapes—see Fig. 14. The subjects drew the

figures twice with a Logitech optic mouse and twice with a

tablet PC. No time to practice their drawing has been given to

the subjects, but the purpose of the test has been explained to

them; so, the user can fill in the form with the number of

segments found. Interestingly, when a drawing is far different

from the given shape, the users ignored the result and redrew it.

This implies the assumption we have made in Section 1 for

input data is plausible.

In this test, the average success rate of our approach was

about 95 percent; drawings are considered successful when the

feature points shown in the test sheet (Fig. 14) are correctly

produced from user’s drawing. Lengthy figures in Fig. 14 have

shown higher errors.

Second, we perform an evaluation test by comparing four

algorithms for the same input: one from the curvature

estimation just adding neighbor direction values within kZ3

support (See Fig. 15), one from the curvature estimation

considering local convexity (see Fig. 16 and Algorithm 1),

one from the curvature estimation considering both local

convexity and monotonicity (see Fig. 17 and Algorithm 2).

Indistinguishable features disappear as more shape
structed to draw. Circles mark the intended feature points.

Fig. 15. Feature point detection by adding neighbor directions.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 238–248 245
descriptors are used. With the method in [3] which uses

bending function with the globally determined support size k,

the result is shown in Fig. 18; for each figures corresponding

k value is shown. As mentioned in Section 4.1, because of
Fig. 16. Feature point detection on
small fluctuations from user hand drawing, the support size is

sometimes set too small (e.g. second figures in the first

column and third in the second column), thus losing some

segmenting points.
ly with convexity information.

Fig. 17. Feature point detection with both local shape descriptors: local convexity and local monotonicity.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 238–248246
Finally, we show a series of examples to demonstrate the

segmentation methods in Fig. 19. Points marked by a small

circle are detected as segmentation points by curvature data

only. Squares mark segmentation points that are detected after
Fig. 18. Segmenting point detec
referencing speed data. In Fig. 19(d), e.g. one segmenting point

was lost due to the curvature estimation; at this point, estimated

curvature was 21, which is under the threshold value. Thus, it

slipped out of the curvature test. Comparing Fig. 19(e) with (f),
tion with Fu’s method [3].

Fig. 19. (a) Four line segments were detected. The period marks the start of the pen marking and the circles the segmenting points. (b) Sixteen straight-line segments

were detected. (c) Arrow shaped marking: one spline and three straight lines were found. (d) Using only curvature information, six straight lines and one spline were

found. The fifth segment (containing the square mark) was classified as a spline, since the curvature estimation lost the feature. After relating pen speed data, we

could get eight straight-line segments (octagon). (e) A thin rectangle was recognized. (f) Two adjacent points that form two corners of a rectangle are merged because

segmentation selects only local extreme. (g) Five segments were found including one freeform curve. (h) Four straight lines and one spline were detected.

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 238–248 247
we can derive one property of our approach: when the two

adjacent points have high curvature only one of them can be

selected out as a segmenting point. In other words, the

minimum arch length of two adjacent segmenting points is 3M,

where M is the minimum distance between two adjacent points.
Fig. 20. Pixel space limits drawing style.
5. Discussion

Digital curves drawn on the pen-input display are stored in

pixel space, therefore their final shape and interpretations in

pixel space are limited unlike just drawing on a paper. For

example, Fig. 20 can be drawn in any scale on a paper but not in

the pixel space when it is scaled down. For the drawing on a

paper, between any two consecutive sample points in the

figures exist infinitely many points. In that case, minimum

distance M between two adjacent sample points does not need

to be as large as in the case of the pixel space. Then direction

D.H. Kim, M.-J. Kim / Computer-Aided Design 38 (2006) 238–248248
values will be far smaller than shown in Fig. 20, resulting in no

segmenting points detected. Remember that for such resam-

pling to happen the figure must be drawn in about 30!20

pixels. From this resolution on downwards, it is unclear from

the user drawing whether, for example, p8p9 is part of a circular

arc or a straight line and the final curve is a polyline or one

smooth curve. This is the restriction of our approach and other

segmentation algorithms, too, working in pixel space.

6. Conclusion

We have presented a new curvature estimation method that

operates simply in angle space, considering only local shape

information: local convexity and local monotonicity. We also

showed, how this estimate can be applied to segment pen

markings. Since this method yields curvature in angle,

estimated curvatures can directly be used for shape recognition.

For future research, we suggest testing this method with

locally smoothed data by feature-preserving smoothing [6].

Another future line of research is to test our idea on analytical

shapes as in [3]. Since the shape information is derived from

mathematical definitions, this should work fine as well.

Supplementary data

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.cad.2005.10.006

References

[1] Carmo M. Differential geometry of curves and surfaces. Englewood,

Cliffs, NJ: Prentice- Hall; 1976.

[2] Davis R. Position statement and overview: sketch recognition at mit. In:

American association for artificial intelligence spring symposium on

sketch recognition; 2002.

[3] Fu AMN, Yan H, Huang K. A curve bend function based method to

characterize contour shapes. Pattern Recognit 1997;30(10):1661–71.

[4] Hammond T, Davis R. Ladder: a language to describe drawing, display,

and editing in sketch recognition. In: Proceedings of IJCAI (International

joint conference on artificial intelligence); August 2003.

[5] Hoschek J, Lasser D.Fundamentals of computer aided geometric design.

A.K. Peters, Ltd; 1989.

[6] Jones TR, Durand F, Desbrun M. Non-iterative, feature-preserving mesh

smoothing. In: ACM SIGGRAPH 2003. ACM; 2002.
[7] Moktarian F, Mackworth K. A theory of multiscale-based shape

representation for planar curves. IEEE Trans Pattern Anal Mach Intell

1992;14(8):789–805.

[8] Ratterangsi A, Chin T. Scale-based detection of corners of planar curves.

IEEE Tran Pattern Anal Mach Intell 1992;14(4):430–49.

[9] Rosenfeld A, Weszka S. An improved method of angle detection on

digital curves. IEEE Trans Comput 1975;C-24:940–1.

[10] Sezgin TM. Feature point detection and curve approximation for early

processing of free-hand sketches. PhD Thesis. EECS of UC Berkeley;

2001.

[11] Teh CH, Chin T. On the detection of dominant points on digital curves.

IEEE Trans Pattern Anal Mach Intell 1989;11(8):859–72.

[12] Wang MJ, Wu W, Huang L, Wang D. Corner detection using bending

value. Pattern Recognit Lett 1995;16:575–83.
Dae Hyun Kim received his BS degree in 1994 in

computer science from Seoul National University

of Technology, Korea, his MS in 1996 in computer

science from Korea University, his PhD in 2004

from Bremen Universitaet, Germany. His PhD

supervisor is Prof. Frieder Nake, who was one of
the founders of Computer Art in 1960s. Since his

PhD, he had been a post-doctoral researcher under

the supervision of Prof. Myoung-Jun Kim, Ewha

Womans University, Korea. From June 2004 he

has been working for the Institute for Graphic

Interfaces as a senior researcher and the leader of the Tiled Display Team. He

also worked for the Korea Electronics and Telecommunications Research

Institute (ETRI) from 1996 to 1999 as a researcher for the computer graphics

team. His research focuses on geometric modeling, sketch-based modeling,

and, recently, appearance modeling.
Myoung-Jun Kim received his BS degree in 1989

in computer science from the Korea Institute of

Technology, Korea, his MS in 1992 and his PhD in

1996, both in computer science, from the Korea

Advanced Institute of Science and Technology

(KAIST). Since his PhD, he has been a post-
doctoral researcher at the University of Washing-

ton in 1996. He has also worked for the Korea

Electronics and Telecommunications Research

Institute (ETRI) from 1997 to 2000 as a senior

researcher for the Computer Graphics Team. From

2001, he has been an assistant professor at Ewha Womans University. His

technical research and experience include mathematical modeling, computer

graphics, and, recently, digital appearance modeling.

http://dx.doi.org/doi:10.1016/j.cad.2005.10.006

	A curvature estimation for pen input segmentation in sketch-based modeling
	Introduction
	Definitions
	Curvature estimation
	Evaluation of the Algorithm
	Analysis and comparison of curvature estimators
	Evaluation tests

	Discussion
	Conclusion
	Supplementary data
	References

